Mono- and polynuclear complexes of palladium(II) and platinum(II) with $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}$

J. Forniés, R. Navarro and E.P. Urriolabeitia
Departamento de Química Inorgánica, Instituto de Ciencia de Materiales de Aragón, Uniwersidad de Zaragoza-CSIC, 50009 Zaragoza (Spain)

(Received July 29, 1992)

Abstract

Complexes of the type [$\left.\mathrm{MXX}{ }^{\prime}\left\{\eta^{2}\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right\}\right]\left(\mathrm{M}=\mathrm{Pd}, \mathrm{X}=\mathrm{X}^{\prime}=\mathrm{Cl}\right.$ (1), Br (3), $\mathrm{C}_{6} \mathrm{~F}_{5}$ (6); $\mathrm{X}=\mathrm{Cl}, \mathrm{X}^{\prime}=\mathrm{C}_{6} \mathrm{~F}_{5}$ (4); $\mathrm{M}=\mathrm{Pt}$ $\mathrm{X}=\mathrm{X}^{\prime}=\mathrm{Cl}(2), \mathrm{C}_{6} \mathrm{~F}_{5}$ (7); $\mathrm{X}=\mathrm{Cl}, \mathrm{X}^{\prime}=\mathrm{C}_{6} \mathrm{~F}_{5}$ (5)) have been obtained by reaction of palladium or platinum compounds with $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}$. The ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right) \mathrm{NMR}$ spectra of these complexes indicate that one of the P atoms of the triphosphine remains uncoordinated and allows the synthesis of polynuclear complexes such as $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{M}\left\{\eta^{3}-\mu^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right\} \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})\right](\mathrm{M}=\mathrm{Pd}$ (9), $\mathrm{Pt}(10))$ and $\left[\left(\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{M}\left(\eta^{3}-\mu^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right)\right\}_{2} \mathrm{Au}\right]\left(\mathrm{ClO}_{4}\right)(\mathrm{M}=\mathrm{Pd}(11), \mathrm{Pt}(12))$. The structure of these complexes has been established using ${ }^{31} P\left({ }^{1} \mathrm{H}\right)$ and ${ }^{19} \mathrm{~F}$ NMR spectra.

1. Introduction

There is a considerable interest in the use of the triphosphine $1,1,1$-tris (diphenylphosphino) methane, $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}$, tdppm, as a ligand [1] due to its versatile coordination behaviour. $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}$ is ideally suited for the complexation of a trigonal array of metal atoms and this $\eta^{3}-\mu^{3}$ coordination mode has been extensively studied [2]. Complexes in which $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}$ acts as a η^{1}-monodentate [3], η^{2}-chelating [3,4], η^{3}-chelating [5], $\eta^{2}-\mu^{2}$-bridging [3], and $\eta^{3}-\mu^{2}$-bridging chelating agent [$3,4 \mathrm{~b}, 6$] have been characterized.

However, $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}$ has received little attention in the context of palladium or platinum chemistry $[4 \mathrm{c}, 6 \mathrm{a}]$. This paper deals with the systematic synthesis of several neutral or cationic palladium and platinum complexes containing tdppm acting as a chelate ligand, $\eta^{2}-\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}$, and their use for the preparation of polynuclear derivatives with the tdppm acting as a chelating bridging group, $\eta^{3}-\mu-\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}$.

[^0]
2. Results and discussion

Neutral mononuclear complexes of the type [$\left.\mathrm{MXX}^{\prime}\left(\eta^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right)\right]\left(\mathrm{X}, \mathrm{X}^{\prime}=\mathrm{Cl}, \mathrm{Br}\right.$, or $\mathrm{C}_{6} \mathrm{~F}_{5} ; \mathrm{M}=$ Pd or Pt) containing tris(diphenylphosphino)methane acting as a P, P^{\prime}-bidentate ligand are obtained either by displacement reactions or bridge cleavage processes (eqns. (1)-(5)).

$$
\begin{align*}
{\left[\mathrm{MCl}_{2}(\mathrm{THT})_{2}\right]+} & \mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3} \xrightarrow{\text { acetone }} \\
& {\left[\mathrm{MCl}_{2}\left(\eta^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right)\right]+2 \mathrm{THT} } \tag{1}
\end{align*}
$$

THT $=$ tetrahydrothiophene, $\mathrm{M}=\mathrm{Pd}$ (1), Pt (2)
$\left[\mathrm{NBu}_{4}\right]_{2}\left[\mathrm{Pd}_{2}(\mu-\mathrm{Br})_{2} \mathrm{Br}_{4}\right]+2 \mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3} \xrightarrow{\text { acetone }}$

$$
\begin{equation*}
2\left[\mathrm{PdBr}_{2}\left[\eta^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right\}\right]+2\left[\mathrm{NBu}_{4}\right] \mathrm{Br} \tag{2}
\end{equation*}
$$

(3)

$$
\begin{gathered}
{\left[\left\{\mathrm{M}(\mu-\mathrm{Cl})\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{THT})\right\}_{2}\right]+2 \mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3} \longrightarrow} \\
2\left[\mathrm{MCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left\{\eta^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right\}\right]+2 \mathrm{THT} \\
\mathbf{M}=\mathbf{P d}(\mathbf{4}), \mathrm{Pt}(\mathbf{5})
\end{gathered}
$$

TABLE 1. Analytical ${ }^{\text {a }}$ and conductivily ${ }^{b}$ data for the complexes 1-12

Complex		C(\%)	H (\%)	Λ_{M}
$\left[\mathrm{PdCl}_{2}\left\{\eta^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right\}\right]$	1	59.51 (59.58)	4.48 (4.19)	n.c.
$\left[\mathrm{PtCl}_{2}\left\{\eta^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right\}\right]$	2	53.45 (53.25)	3.68 (3.74)	n.c.
$\left[\mathrm{PdBr}_{2}\left(\eta^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right)\right]$	3	53.56 (53.23)	4.12 (3.74)	n.c.
$\left[\mathrm{PdCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\eta^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right)\right]$	4	59.01 (58.85)	4.41 (3.56)	n.c.
$\left[\mathrm{PtCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\eta^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right)\right]$	5	53.63 (53.45)	3.23 (3.23)	n.c.
$\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mathrm{\eta}^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right)\right]$	6	58.33 (58.32)	3.18 (3.09)	n.c.
$\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left[\eta^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right)\right]$	7	53.85 (53.61)	2.89 (2.84)	n.c.
$\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\left(\eta^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right)\right]\left(\mathrm{ClO}_{4}\right)$	8	61.44 (60.86)	4.30 (3.85)	116
$\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pd}\left\{\eta^{3}-\mu^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right) \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})\right]$	9	47.92 (47.54)	2.25 (1.99)	n.c.
$\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left(\eta^{3}-\mu^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right) \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})\right]$	10	45.00 (44.99)	1.87 (1.88)	n.c.
$\left[\left\{\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pd}\left\{\eta^{3}-\mu^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right]\right\}_{2} \mathrm{Au}^{2} \mathrm{CClO}_{4}\right)$	11	49.94 (50.85)	2.87 (2.70)	112
$\left[\left\{\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pt}\left\{\eta^{3}-\mu^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right\}\right]_{2} \mathrm{Au}\right\}\left(\mathrm{ClO}_{4}\right)$	12	46.26 (47.23)	2.66 (2.50)	100

${ }^{\text {a }}$ Calculated values in parentheses.
${ }^{\mathrm{b}}$ in $5 \times 10^{-4} \mathrm{M}$ acetone solution, Λ_{M} in $\Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$, (n.c. $=$ non-conducting).

$$
\begin{array}{r}
{\left[\mathrm{NBu}_{4}\right]_{2}\left[\left\{\mathrm{Pd}(\mu-\mathrm{Cl})\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}_{2}\right]+2 \mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3} \longrightarrow} \\
2\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\eta^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right\}\right]+2\left(\mathrm{NBu}_{4}\right) \mathrm{Cl} \tag{4}
\end{array}
$$

(6)

$$
\begin{align*}
& {\left[\mathrm{Pt}^{\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{THT})_{2}\right]+\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3} \longrightarrow}\right.} \\
& \quad\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left[\eta^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right\}\right]+2 \mathrm{THF} \tag{5}
\end{align*}
$$

THF = tetrahydrofuran
The reaction between $\left[\mathrm{NBu}_{4}\right]_{2}\left[\left(\mathrm{Pt}(\mu-\mathrm{Cl})_{2}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]_{2}\right]$ and $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}$ does not yield a platinum complex homologous to the palladium product of eqn. (4), and a mixture of complexes, which was not elucidated, was obtained. However, the required complex 7 was obtained by using $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{THF})_{2}\right]$ (eqn. (5)).

In contrast a cationic complex $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\left(\eta^{2}\right.\right.$ $\left.\left.\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right)\right]\left(\mathrm{ClO}_{4}\right)(8)$ was prepared according to eqns. (6) and (7), by using AgClO_{4} as a haiide abstractor in acetone and by treating the resulting solution, after filtration of the AgCl formed, with tdppm (molar ratio 1:1).

$$
\begin{align*}
& {\left[\mathrm{PdCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]+\mathrm{AgClO}_{4} \longrightarrow} \\
& {\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}(\text { acetone })_{r}\right]\left(\mathrm{ClO}_{4}\right)+\mathrm{AgCl}} \tag{6}\\
& {\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}(\text { acetone })_{x}\right]\left(\mathrm{ClO}_{4}\right)} \\
& +\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3} \longrightarrow \\
& {\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\left(\eta^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right]\right]\left(\mathrm{ClO}_{4}\right)+\mathrm{PPh}_{3}} \\
& (8)
\end{align*}
$$

TABLE 2. IR data $\left(\mathrm{cm}^{-1}\right)$ for the complexes $\mathbf{1 - 1 2}$

Complex	$\mathrm{C}_{6} \mathrm{~F}_{5}$	$\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}$	Others
1		550, 510, 505, 485, 475	300, $285{ }^{\text {a }}$
2		555, 515, 505, 490, 480	308, $285{ }^{\text {a }}$
3		550, 545, 515, 505, 485, 475	250, $245{ }^{\text {a }}$
4	1498, 951	541, 520, 503, 487, 471	$303{ }^{\text {a }}$
5	1502, 954	553, 508, 494, 467	$309{ }^{\text {a }}$
6	1497,955	530, 510, 497, 490, 470	
7	1499, 956	554, 543, 520, 500, 495	
8	1500, 955	d	1100, $623{ }^{\text {b }}$
9	1512, 1502, 962, 952	585, 512, 500, 482	$2115{ }^{\text {c }}$
10	1500, 970, 960	588, 546, 530, 523, 514, 502, 487	$2089{ }^{\text {c }}$
11	1505, 957	532, 498, 483	1100, $624{ }^{\text {b }}$
12	1501, 959	543, 526, 504, 479	1100, $624{ }^{\text {b }}$

[^1]

Fig. 1.
The formation of 8 takes place with displacement of one mole of PPh_{3}.

Finally, since all these complexes contain an uncoordinated P atom, they can be used for the synthesis of polynuclear complexes with a $\eta^{3}-\mu^{2}-\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}$ group. Thus the treatment of $\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\eta^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right\}\right](\mathrm{M}$ $=\mathrm{Pd}$ or Pt$)$ with $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})(\mathrm{THF})\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gives binuclear neutral complexes (eqn. (8)).

$$
\begin{align*}
& {\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left[\eta^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right\}\right]} \\
& \quad+\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})(\mathrm{THF})\right] \longrightarrow \\
& \quad\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{M}\left\{\eta^{3}-\mu^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right\} \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})\right] \tag{8}\\
& \quad \mathrm{M}=\mathrm{Pd}(\mathbf{9}), \mathrm{Pt}(\mathbf{1 0})
\end{align*}
$$

The reaction of $\left.\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right)_{2}\left(\eta^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right)\right]$ with [$\mathrm{Au}(\text { tht })_{2} \mathrm{KClO}_{4}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (molar ratio 2:1) leads to trinuclear cationic derivatives of the type $\left[\left\{\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2^{-}}\right.\right.$ $\left.\left.\mathrm{M}\left\{\eta^{3}-\mu^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right\}\right\}_{2} \mathrm{Au}\right]\left(\mathrm{ClO}_{4}\right)(\mathrm{M}=\mathrm{Pd}$ or Pt$)$ (eqn. (9)).

$$
\begin{align*}
& 2\left[\mathrm{M}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\eta^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right\}\right] \\
& +\left[\mathrm{Au}(\mathrm{THT})_{2}\right]\left(\mathrm{ClO}_{4}\right) \longrightarrow \\
& \left.\quad\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{M}\left\{\eta^{3}-\mu^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right\}\right\}_{2} \mathrm{Au}\right]\left(\mathrm{ClO}_{4}\right) \quad(9) \tag{9}
\end{align*}
$$

$\mathrm{M}=\mathrm{Pd}$ (11), Pt (12)
Analytical and conductivity data are collected in Table 1.

2.1. IR spectra

Selected IR data are collected in Table 2. Characteristic absorptions due to the $\mathrm{C}_{6} \mathrm{~F}_{5}$ group are ob-

Fig. 2.
served in complexes 4-12 (1510-1490vs; 970-950vs; $810-760 \mathrm{~s}$), the latter two sets assigned to the X -sensitive mode of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ group, have been used previously for structural assignments [7,8]. However, internal absorptions of the $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}$ in this range render them useless in these complexes. Complexes $1-5$ show bands in the region $310-245 \mathrm{~cm}^{-1}$ assignable to $\nu(\mathrm{M}-$ $\mathrm{X})(\mathrm{X}=\mathrm{Cl}: 1,2,4$ and 5; $\mathrm{X}=\mathrm{Br}: \mathbf{3})$. Complexes 1, 2 and $\mathbf{3}$ show two absorptions as expected for a cis-compound. Internal absorptions of other ligands have been assigned in Table 2. In complexes 9 and 10 the decrease of $\nu(\mathrm{CO})$ relative to that of the starting material indicates an increase of electron density around the platinum, in keeping with the higher basicity of the phosphine as compared to THF.

2.2. NMR spectra

2.2.1. ${ }^{31} P\left\{{ }^{1} H\right\}$ NMR spectra

Chemical shifts are presented in Table 3. For complexes 1-12 several types of P atom can be distinguished (Figs. 1 and 2). These are listed below.
a) $\mathrm{P}_{\mathrm{a}}: \mathrm{P}$ atom of the coordinate PPh_{3};
b) $\mathrm{P}_{\mathrm{b}}: \mathrm{P}$ atom trans to a $\mathrm{C}_{6} \mathrm{~F}_{5}$ group of tdppm;
c) $\mathrm{P}_{\mathrm{c}}: \mathrm{P}$ atom trans to a non- $\mathrm{C}_{6} \mathrm{~F}_{5}$ group (E) of tdppm;
d) P_{d} : uncoordinated P atom of tdppm;
e) $P_{c}: P$ atom (initially P_{d}) attached to a second metal centre (M^{\prime}) (Fig. 2).

The P atoms of the η^{2} - $\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}$ group ($\mathrm{P}_{\mathrm{b}}, \mathrm{P}_{\mathrm{c}}, \mathrm{P}_{\mathrm{d}}$) show high field ${ }^{31} \mathrm{P}$ chemical shifts (-18 to $-\mathbf{3 9} \mathrm{ppm}$.).

TABLE $3 .{ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right) \mathrm{NMR}$ data ${ }^{\mathrm{a}}$

[^2]TABLE 4. ${ }^{19} \mathrm{~F}$ NMR data ${ }^{a}$ at room temperature

Complex	F_{o}	$\mathrm{~F}_{m}$	$\mathrm{~F}_{p}$	${ }^{3} J\left(\mathrm{Pt}-\mathrm{F}_{o}\right)$
$\mathbf{4}$	-117.25	-163.67	-161.30	
$\mathbf{5}$	-119.16	-164.41	-162.08	264.3
$\mathbf{6}$	-116.22	-164.91	-162.73	
$\mathbf{7}$	-116.00	-164.88	-163.13	312.0
$\mathbf{8}$	-116.57	-162.01	-159.77	
$\mathbf{9}$	-117.53	-162.89		
	-115.27	-163.45	-161.16	
	-118.43	-162.32	-158.02	332
$\mathbf{1 0}$	-117.97	-162.50	-159.55	
	-118.56	-164.22	-159.59	260
			-161.99	
$\mathbf{1 1}$	-113.66	-163.00	-160.49	
$\mathbf{1 2}$	-116.27	-164.31	-162.35	317

${ }^{2} \boldsymbol{\delta}, \mathrm{ppm}$ referred to $\mathrm{CFCl}_{3} ; J$ in Hz ,; solvent CDCl_{3}; room temperaturc.

The ${ }^{2} J\left(\mathrm{P}_{\mathrm{b}}-\mathrm{P}_{\mathrm{c}}\right)$ values are in the range $69-99 \mathrm{~Hz}$, higher than the values of ${ }^{2} J\left(\mathrm{P}_{\mathrm{b}}-\mathrm{P}_{\mathrm{d}}\right)$ and ${ }^{2} J\left(\mathrm{P}_{\mathrm{c}}-\mathrm{P}_{\mathrm{d}}\right)(14-24 \mathrm{~Hz})$. In the polynuclear derivatives 9-12, with the triphosphine acting as bridging ligand, $\left(\eta^{3}-\mu^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right)$, all the ${ }^{31} \mathrm{P}$ signals are shifted downfield relative to those in the mononuclear starting materials (6,7), with the highest variation corresponding to shift of P_{e} relative to P_{d}. The atoms labelled as P_{e} show low field ${ }^{31} \mathrm{P}$ chemical shifts, as does the P atom of the monodentate PPh_{3} in complex (8).

2.2.2. ${ }^{19}$ F NMR spectra

 $\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}$] $]\left(\mathrm{M}=\mathrm{Pd}\right.$ or $\mathrm{Pt} ; \mathrm{X}=\mathrm{Cl}$ or $\left.\mathrm{C}_{6} \mathrm{~F}_{5}\right)(4-7)$) show ${ }^{19} \mathrm{~F}$ NMR spectra at room temperature (Table 4) with three sets of signals corresponding to $\mathrm{F}_{o}, \mathrm{~F}_{p}$ and F_{m}, in keeping with the presence of one $\mathrm{C}_{6} \mathrm{~F}_{5}$ group $(4,5)$ or two equivalent $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups (6,7), in which both halves of each $\mathrm{C}_{6} \mathrm{~F}_{5}$ group act as equivalent (AA' MXX' system). At $-85^{\circ} \mathrm{C}$ signals due to F_{o} and F_{m} are split (see Table 5) and the ${ }^{19} \mathrm{~F}$ NMR spectra are as expected for an AFMRX system, which corresponds to the static molecule. However, if it is assumed that the $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups are not able to rotate around the $\mathrm{M}-\mathrm{C}_{\text {ipso }}$ bonds because of steric hindrance [9], a dynamic process on the NMR time scale should be operating at room temperature in order effectively to produce a plane of symmetry. Nevertheless, we have not found a sensible explanation for our observations since the two more obvious of these processes (a) deprotonation/protonation of the acidic H atom of the tdppm and (b) fast intramolecular exchange of the coordinated and uncoordinated P atoms of the tdppm, must be excluded for the following reasons:
a) A dynamic process such as that presented in eqn. (10) seems not to operate since the ${ }^{1} \mathrm{H}$ NMR spectra of
the complexes at room temperature show a sharp quartet (5-6 ppm.) assigned [4d] to the H atom of $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}$ coupled with the three ${ }^{31} \mathrm{P}$ nucleus. The ${ }^{2} J(\mathrm{P}-\mathrm{H})$ coupling constants are almost the same. (See Experimental section.)

b) Fast intramolecular exchange of P atoms (eqn. (11)) would imply the equivalence of all P atoms of the $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}$. However, the ${ }^{31} \mathrm{P}\left({ }^{1} \mathrm{H}\right)$ NMR spectra in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ remain unchanged, even at $60^{\circ} \mathrm{C}$ for complexes 4 and 5 and at $120^{\circ} \mathrm{C}$ for complexes 6 and 7, and continue to show three $(4,5)$ or two $(6,7)$ types of chemically inequivalent ${ }^{31} \mathrm{P}$ nucleus, consistent with a static structure.

The ${ }^{19} \mathrm{~F}$ NMR spectra of the cationic trinuclear complexes $\left[\left\{\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{M}\left(\eta^{3}-\mu^{2} \text { - }\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right)\right\}_{2} \mathrm{Au}\right]\left(\mathrm{ClO}_{4}\right)$ ($\mathrm{M}=\mathrm{Pd}$ (11), Pt (12) are similar to those of (4-7) (Table 5).

The ${ }^{19} \mathrm{~F}$ NMR spectrum of $\left[\operatorname{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\left(\eta^{2}-\right.\right.$ $\left.\left.\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right\}\right]\left(\mathrm{ClO}_{4}\right)$ (8) shows two signals due to F_{o} atoms, two due to F_{m} and one due to F_{p}, thus indicating that the two halves of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ group are inequivalent.

The ${ }^{19} \mathrm{~F}$ NMR spectra of the neutral dinuclear derivatives $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{M}\left\{\eta^{3}-\mu^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right\} \mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2^{-}}\right.$

TABLE 5. ${ }^{19}$ F NMR data ${ }^{\text {a }}$ at low temperature

Complex	F_{o}	$\mathrm{~F}_{m}$	$\mathrm{~F}_{p}$	${ }^{3} J\left(\mathrm{Pt}-\mathrm{F}_{o}\right)$
$\mathbf{4}$	-116.51	-162.41	-160.43	
$\mathbf{5}$	-118.75	-162.74		
	-118.72	-162.92	-161.15	254.8
$\mathbf{6}$	-120.68	-163.36		238.2
$\mathbf{7}$	-113.09	-162.75	-161.12	
	-113.85	-163.05		c
$\mathbf{1 1}$	-118.28	-164.06^{b}	-162.26	c
	-118.78			
$\mathbf{1 2}$	-110.40	-160.00	-159.60	
	-111.71	-160.21		
	-113.19	-161.82	-160.37	c

${ }^{\text {a }} \delta$, ppm referred to $\mathrm{CFCl}_{3} ; J$ in Hz .; solvent $\mathrm{CD}_{2} \mathrm{Cl}_{2} ;-85^{\circ} \mathrm{C}$.
${ }^{\mathrm{b}}$ broad signal.
${ }^{c}$ Signals partially overlap, precluding the measurement of the coupling constant ${ }^{3} J\left(\mathrm{Pt}_{\mathrm{t}}-\mathrm{P}_{o}\right)$.
(CO)] $\mathrm{M}=\mathrm{Pd}$ (9), Pt (10) show three signals corresponding to F_{p} atoms, one of them with double the intensity of the other two. This indicates that there are three types of $\mathrm{C}_{6} \mathrm{~F}_{5}$ group, in keeping with the proposed formulae. However, a complete assignment of signals due to F_{o} and F_{m} atoms of the different types of $\mathrm{C}_{6} \mathrm{~F}_{5}$ group cannot be made because of some overlapping of signals. For $\left[\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{Pd}\left(\eta^{3}-\mu^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right) \mathrm{Pt}-\right.$ $\left.\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})\right]$ (9), one signal due to F_{o} atoms of the $\mathrm{C}_{6} \mathrm{~F}_{5}$ groups bonded to palladium can clearly be observed, and a complex multiplet with ${ }^{195} \mathrm{Pt}$ satellites (with the same fine structure as the main signal) can be observed for the F_{o} atoms of the two different types of $\mathrm{C}_{6} \mathrm{~F}_{5}$ group bonded to platinum. Signals due to all $\mathrm{F}_{\boldsymbol{m}}$ atoms appears as two complex multiplets (see Table 4). For complex 10, only two signals (with ${ }^{195} \mathrm{Pt}$ satellites) due to F_{o} atoms are observed as well as two broad signals due to the $\mathrm{F}_{\boldsymbol{m}}$ atoms.

3. Experimental section

C and H analyses, IR spectra, ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra and conductance data were obtained as described previously [10]. The starting materials $\left[\left\{\operatorname{Pd}(\mu-\mathrm{Cl})\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{THT})\right]_{2}\right] \quad[11], \quad\left[\left\{\mathrm{Pt}(\mu-\mathrm{Cl})\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)-\right.\right.$ $\left.(\mathrm{THT}))_{2}\right][12],\left[\mathrm{PtCl}_{2}(\mathrm{THT})_{2}\right][12,13]\left[\mathrm{PdCl}_{2}(\mathrm{THT})_{2}\right]$ [13], $\left(\mathrm{NBu}_{4}\right)_{2}\left[\left(\mathrm{Pd}(\mu-\mathrm{Cl})\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right\}_{2}\right][13],\left[\mathrm{NBu}_{4}\right]_{2}[\{\mathrm{Pd}(\mu-$ $\left.\left.\mathrm{Br}) \mathrm{Br}_{2}\right\}_{2}\right]$ [14] cis-[Pt($\left.\left.\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{THF})_{2}\right]$ [15], trans$\left[\mathrm{PdCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \quad[16], \quad c i s-\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})(\mathrm{THF})\right]$ [17] and $\left[\mathrm{Au}(\mathrm{THT})_{2}\right]\left(\mathrm{ClO}_{4}\right)$ [18] were prepared by published methods.

3.1. $\left[M \mathrm{MCl}_{2}\left\{\eta^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right\}\right] ; \mathrm{M}=\mathrm{Pd}$ (1), Pt (2)

To a solution of $\left[\mathrm{PdCl}_{2}(\mathrm{THT})_{2}\right](0.200 \mathrm{~g}, 0.565 \mathrm{mmol})$ in acetone (30 ml) at room temperature, $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}$ ($0.321 \mathrm{~g}, 0.565 \mathrm{mmol}$) was added. The initially deep
orange solution turned pale yellow and a pale yellow solid precipitated; the suspension was stirred for 1 h at room temperature and then the precipitate was filtered off and washed with acetone ($3 \times 5 \mathrm{ml}$). 1: $0.39 \mathrm{~g}, 92 \%$ yield. Complex 2 was obtained similarly from $\left[\mathrm{PtCl}_{2}(\mathrm{THT})_{2}\right](0.353 \mathrm{~g}, 0.802 \mathrm{mmol})$ and $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}$ ($0.456 \mathrm{~g}, 0.802 \mathrm{mmol}$). 2: $0.54 \mathrm{~g}, 80 \%$ yield.

3.2. $\left[\mathrm{MBr}_{2}\left\{\eta^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right\}\right]$ (3)

Complex 3 was obtained similarly to 1,2 from $\left(\mathrm{NBu}_{4}\right)_{2}\left[\left\{\mathrm{Pd}\left(\mu-\mathrm{Br}^{2}\right) \mathrm{Br}_{2}\right\}_{2}\right](0.25 \mathrm{~g}, 0.164 \mathrm{mmol})$ and $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}(0.186 \mathrm{~g}, 0.328 \mathrm{mmol}) .3: 0.25 \mathrm{~g}, 75 \%$ yield.

3.3. $\left[\mathrm{MCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left\{\eta^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right\}\right] ; \mathrm{M}=\mathrm{Pd}$ (4), Pt (5)

To a solution of $\left[\left\{\mathrm{Pd}(\mu-\mathrm{Cl})\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{THT})\right\}_{2}\right](0.42 \mathrm{~g}$, 0.528 mmol) in benzene (30 ml) $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}(0.601 \mathrm{~g}$, 1.057 mmol) was added. The mixture was stirred for 30 \min at $25^{\circ} \mathrm{C}$. The resulting precipitate was filtered off and washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 10 \mathrm{ml}) .4: 0.9 \mathrm{~g}, 97 \%$ yield. ${ }^{1} \mathrm{H}$ NMR data $\left(\mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right): \delta\left[H C\left(\mathrm{PPh}_{2}\right)_{3}\right]: 5.57$ $\mathrm{ppm} .^{2} J(\mathrm{P}-\mathrm{H})=8.7 \mathrm{~Hz}$. Complex 5 was obtained similarly from $\left[\left\{\mathrm{Pt}(\mu-\mathrm{Cl})\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{THT})\right)_{2}\right](1.00 \mathrm{~g}, 1.04 \mathrm{mmol})$ and $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}(1.1814 \mathrm{~g}, 2.08 \mathrm{mmol}) .5: 1.37 \mathrm{~g}, 70 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right): \delta\left[H \mathrm{C}\left(\mathrm{PPh}_{2}\right)_{3}\right]: 5.66$ ppm ${ }^{2} \mathrm{~J}(\mathrm{P}-\mathrm{H})=7.6 \mathrm{~Hz}$.

3.4. $\left[P d\left(C_{6} F_{5}\right)_{2}\left\{\eta^{2}-\left(P P h_{2}\right)_{3} C H\right\}\right]$ (6)

To an acetone solution (30 ml) of $\left[\mathrm{NBu}_{4}\right]_{2}[\{\mathrm{Pd}(\mu-$ $\left.\mathrm{Cl})\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{l}_{2}\right](0.9 \mathrm{~g}, 0.626 \mathrm{mmol}) \mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}(0.712 \mathrm{~g}$, 1.252 mmol) was added. The mixture was stirred for 3 h at room temperature. After evaporating to small volume (2 ml) and addition of ${ }^{\mathrm{i}} \mathrm{PrOH}(20 \mathrm{ml})$, a white solid 6 , which was washed with hexane ($2 \times 10 \mathrm{ml}$), was obtained: $0.632 \mathrm{~g}, 50 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right)$: $\delta\left[\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}\right]: 5.49 \mathrm{ppm}^{2} \mathrm{~J}(\mathrm{P}-\mathrm{H})=10.0 \mathrm{~Hz}$.

3.5. $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\eta^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right\}\right]$ (7)

To a solution of $\operatorname{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{THF})_{2}(0.5 \mathrm{~g}, 0.742 \mathrm{mmol})$ in acetone (20 ml), $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}(0.422 \mathrm{~g}, 0.742 \mathrm{mmol})$ was added, and the mixture was stirred at room temperature for 10 min . The solution was evaporated to dryness and the resulting oily residue was treated with $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{ml})$, giving a white solid $6: 0.448 \mathrm{~g}, 55 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right): \delta\left[H C\left(\mathrm{PPh}_{2}\right)_{3}\right]: 5.56 \mathrm{ppm}$ ${ }^{2} \mathrm{~J}(\mathrm{P}-\mathrm{H})=9.0 \mathrm{~Hz}$.

3.6. $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)\left\{\eta^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right\}\right]\left(\mathrm{ClO}_{4}\right)(8)$

$\left[\mathrm{PdCl}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right](0.150 \mathrm{~g}, 0.180 \mathrm{mmol})$ was treated with $\mathrm{AgClO}_{4}(0.037 \mathrm{~g}, 0.180 \mathrm{mmol})$ in acetone (30 ml). After stirring for 30 min at room temperature, the precipitated AgCl was filtered off. To the acetone solution, $\mathrm{HC}\left(\mathrm{PPh}_{2}\right)_{3}(0.102 \mathrm{~g}, 0.180 \mathrm{mmol})$ was added, and the mixture was heated under reflux for 2 h and then evaporated to small volume (2 ml). The addition
of $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{ml})$ gave a pale yellow solid $8: 0.16 \mathrm{~g}, 74 \%$ yield.
3.7. $\left[\left(C_{6} F_{5}\right)_{2} M\left\{\eta^{3}-\mu^{2}-\left(P P h_{2}\right)_{3} C H\right\} P t\left(C_{6} F_{5}\right)_{2}(\mathrm{CO})\right] ; \mathrm{M}$ $=P d$ (9), Pt (10)

To a solution of $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\eta^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right)\right]$ (6) $(0.160 \mathrm{~g}, 0.158 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml}),\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}-\right.$ (CO)(THF)] ($0.100 \mathrm{~g}, 0.158 \mathrm{mmol}$) was added. The mixture was stirred at room temperature for 1.5 h and then evaporated to small volume (2 ml). The addition of hexane (20 ml) gave a white solid 9: $0.2025 \mathrm{~g}, 82 \%$ yield. Complex 10 was obtained similarly from $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\eta^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right)\right](7)(0.22 \mathrm{~g}, 0.200 \mathrm{mmol})$ and $\left[\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})(\mathrm{THF})\right](0.144 \mathrm{~g}, 0.200 \mathrm{mmol}) .10$: $0.265 \mathrm{~g}, 80 \%$ yield.
3.8. $\left[\left\{\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2} \mathrm{M}\left\{\eta^{3}-\mu^{2}-\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right\}\right\}_{2} \mathrm{Au}\right]\left(\mathrm{ClO}_{4}\right) ; \mathrm{M}=$ Pd (11), Pt (12)

The treatment of $[\mathrm{AuCl}(\mathrm{THT})](0.063 \mathrm{~g}, 0.198 \mathrm{mmol})$ with $\left[\mathrm{Ag}\left(\mathrm{OClO}_{3}\right)(\mathrm{THT})\right](0.058 \mathrm{~g}, 0.198 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 ml) (30 min , room temperature) gave a solution of $\left[\mathrm{Au}(\mathrm{THT})_{2}\right]\left(\mathrm{ClO}_{4}\right)$ after filtration of precipitated AgCl . To this solution was added $\left[\mathrm{Pd}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left\{\eta^{2}-\right.\right.$ $\left.\left.\left(\mathrm{PPh}_{2}\right)_{3} \mathrm{CH}\right)\right]$ (6) $(0.400 \mathrm{~g}, 0.396 \mathrm{mmol})$. The mixture was stirred for 30 min at room temperature and evaporated to dryness; the addition of $\mathrm{Et}_{2} \mathrm{O}(25 \mathrm{ml})$ gave a pale yellow solid (11): $0.3417 \mathrm{~g}, 75 \%$ yield. Complex 12 was obtained similarly from [AuCl(THT)] (0.0146 g , $\left.0.0455 \mathrm{mmol}),\left[\mathrm{Ag}_{\left(\mathrm{OClO}_{3}\right)}\right)(\mathrm{THT})\right](0.0134 \mathrm{~g}, 0.0455$
 0.091 mmol). (12): $0.0678 \mathrm{~g}, 60 \%$ yield.

Acknowledgments

We thank the DGICYT (Spain) for financial support (Project PB89-0057) and E.P.U. thanks D.G.A. for a grant.

References

1 K. Issleib and H. P. Abicht, J. Prakt. Chem., 312 (1970) 456.
2 (a) A. A. Arduini, A. A. Bahsoun, J. A. Osborn and C. Voelker,

Angew. Chem. Int. Ed., 19 (1980) 1024; (b) A. F. M. J. van der Ploeg and G. van Koten, Inorg. Chim. Acta, 51 (1981) 225; (c) M. M. Harding, B. S. Nicholls and A. K. Smith, J. Organomet. Chem., 226 (1982) C17; (d) A. A. Bahsoun, J. A. Osborn, C. Voelker, J. J. Bonnet and G. Lavigne, Organometallics, 1 (1982) 1114; (e) A. A. Bahsoun, J. A. Osborn, J. P. Kintzinger, P. H. Bird and U. Siriwardane, Nouv. J. Chem., 8 (1984) 125; (f) D. J. Darensbourg, D. J. Zalewski and T. Delord, Organometallics, 3 (1984) 1210; (g) J. A. Clucas, M. M. Harding, B. S. Nicholls and A. K. Smith, J. Chem. Soc., Chem. Commun, (1984) 319; (h) D. J. Darensbourg, D. J. Zalewski, A. L. Rheingold and R. L. Durney, Inorg. Chem., 25 (1986) 3281; (i) J. R. Kennedy, P. Selz, A. L. Rheingold, W. C. Trogler and F. Basolo, J. Am. Chem. Soc., 111 (1989) 3615.

3 J. T. Magne and S. F. Dessens, J. Organomet. Chem., 262 (1984) 347.

4 (a) J. A. Osborn and G. G. Stanley, Angew. Chem. Int. Ed., 19 (1980) 1025; (b) A. A. Bahsoun, J. A. Osborn, P. H. Bird, D. Nucciarone and A. V. Peters, J. Chem. Soc., Chem. Commun., (1984) 72; (c) K. J. Beckett and S. J. Loeb, Can. J. Chem., 66 (1988) 1073; (d) H. El-Almouri, A. A. Bahsoun and J. A. Osborn, Potyhedron, 7 (1988) 2035.
5 J. D. Goodrich and J. P. Selegne, Organometallics, 4 (1985) 798.
6 (a) S. Al-Jibori and B. L. Shaw, J. Organomet. Chem., 272 (1984) 213; (b) H. El-Almouri, A. A. Bahsoun, J. Fischer and J. A. Osborn, Angew. Chem. Int. Ed., 26 (1987) 1169.
7 R. Usón and J. Forniés, Adv. Organomet. Chem. 28 (1988) 219.
8 E. Maslowsky, Jr., Vibrational spectra of Organometallic Compounds, Wiley, New York, 1977, p. 437.
9 A. C. Albéniz, J. C. Cuevas, P. Espinet, J. Mendoza and P. Pratis, J. Organomet. Chem., 410 (1991) 257.

10 J. Forniés, R. Navarro, V. Sicilia and M. Tomás, Inorg. Chim. Acta, 168 (1990) 201.
11 R. Usón, J. Forniés, R. Navarro and M. P. García, Inorg. Chim. Acta., 33 (1979) 69.
12 R. Usón, J. Forniés, P. Espinet and G. Alfranca, Synth. Inorg. Met.-Org. Chem., 10 (1980) 579.
13 R. Usón, J. Forniés, F. Martínez and M. Tumás, J. Chem. Soc., Dalton Trans., (1980) 888.
14 C. M. Harris, S. E. Livingstone and N. C. Stephenson, J. Chem. Soc., (1958) 3697.
15 R. Usón, J. Forniés, M. Tomás and B. Menjón, Organometallics, 4 (1985) 1912.
16 R. Usón, P. Royo, J. Forniés and F. Martínez, J. Organomet. Chem., 90 (1975) 367.
17 R. Usón, J. Forniés, P. Espinet, C. Fortuño, M. Tomás and A. J. Welch, J. Chem. Soc., Dalton Trans., (1988) 3005.
18 R. Usón, A. Laguna, A. Navarro, R. V. Parish and L. S. Moore, Inorg. Chim. Acta, 112 (1986) 205.

[^0]: Correspondence to: Professor J. Forniés.

[^1]: ${ }^{\mathrm{a}} \boldsymbol{\nu}(\mathrm{M}-\mathrm{X})$.
 ${ }^{\mathrm{b}} \mathrm{ClO}_{4}^{-}$.
 ${ }^{c} \nu(\mathrm{CO})$ in $c\left[\mathrm{Pt}^{-}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}(\mathrm{CO})(\mathrm{THF})\right]: 2124 \mathrm{~cm}^{-1}$.
 ${ }^{d} \mathrm{PPh}_{3}$ and $\mathrm{HO}\left(\mathrm{PPh}_{2}\right)_{3}$ bands overlap precluding an unambiguous assignment.

[^2]: ${ }^{\text {a }} \delta$, ppm referred to $\mathrm{H}_{3} \mathrm{PO}_{4} 85 \%, J$ in Hz , solvent CDCl_{3}; complexes $\mathbf{1 , 2} 2$ and $\mathbf{3}$ were not soluble enough for NMR measurements.

